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Rate of Convergence of Lawson's Algorithm 

By A. K. Cline 

Abstract. The algorithm of Charles L. Lawson determines uniform approximations of 
functions as limits of weighted L2 approximations. Lawson noticed from experimental evi- 
dence that the algorithm seemed to converge linearly and convergence was related to a factor 
which was the ratio of the largest nonmaximum error of the best uniform approximation 
to the maximum error. This paper proves the linear convergence and explores the relation of 
the rate of convergence to this ratio. 

1. Introduction. In his Ph.D. dissertation of 1961, Charles L. Lawson discussed 
an algorithm for solving uniform approximation problems by means of limits of 
weighted p-norm solutions. Since then, this algorithm has been explored further by 
several authors. The algorithm is mentioned in Rice [3], and a variation on Lawson's 
algorithm was shown to produce p-norm approximations (p > 2) as a limit of weighted 
L2 norm solutions in Rice and Usow [4]. In the Ph.D. dissertation of this author [1], 
Lawson's algorithm (originally defined for approximation on finite sets) was extended 
to the case of approximation on compact Hausdorff spaces. Presently, attempts are 
underway extending Lawson's algorithm in a different fashion for solving L, 
approximation problems. 

In his dissertation, Lawson gave conditions for convergence of the weighted 
LP solutions to the uniform solution. In some cases (theoretically possible but com- 
putationally highly unlikely), the algorithm may have to be restarted a finite number 
of times before it converges to the proper solution. When it converges to the uniform 
solution, Lawson noticed experimental results indicating linear convergence with a 
convergence factor linked to a certain ratio of error at a point to maximum error of 
the solution. 

It is the purpose of this paper to show that the Lawson algorithm does have linear 
convergence and demonstrate the importance of the convergence factor which 
Lawson noticed experimentally. In Section 2, the basic theory of weighted L, ap- 
proximations will be given, the algorithm introduced, and conditions on its con- 
vergence to the uniform solution given. In Section 3, the fundamental rate of conver- 
gence results are proved through a series of lemmas. 

2. Description of the Lawson Algorithm. Although the algorithm was defined 
for approximation of vector-valued functions by means of weighted L, approxima- 
tions, in this paper we consider only real-valued functions and weighted L, approxi- 
mations. We assume we are given a finite set X = {xi, }, a function f on X, and a 
linear space of approximations G. We let n be the dimension and assume f is not con- 
tained in G (hence n + 1 < m). We seek to find an element g* E G such that 
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I Ig* - f II I lg - f II for all g E GP 

where 11 indicates the uniform norm. We further assume that G has the Chebyshev 
property (i.e., no element of G has n zeros on X other than the identically zero 
function), which guarantees that there exists a unique such best uniform approxi- 
mation g* to f. 

Given a nonnegative, unit weight function w on X (i.e., ET.1 w, = 1 and 
W. 2 0 for j = 1, ***, m), we seek a best weighted L2 approximation to f as the 
g ? G such that 

m \ ~~~~1/2 m1/2 

(E w[tx _ X w,[f(x) - g(X)]2 

for all g E G. A characterization of such solutions is given by the standard 
orthogonality property: 

i minimizes the quantity (,- wi[f(x,) -g(Xi)]2) i over all 

g E G if and only if A}1 w,(f(x) - g(x))g(xi) = 0 for all g E G. 

Using the orthogonality property, it is easy to show that such a unique best w-weighted 
L2 approximation g to f exists if and only if there are at least n positive components 
of the weight function w. We label the set of all such weight functions W. That is, 

m~~~~~~i 
W = {aw = E = 1, w. > 

for all j and > 0 for at least n values of j}. 

It is clear that W is not a compact set; however, it is the union of a countable 
collection of compact sets. To see this, for e > 0, let 

W= {w= {w;}7.-1:w G Wand w; e for at least n values ofj}. 

Then, for any sequence {I } l with limit zero, it is clear that W = U_..1 W.. The 
compactness of such sets W, will be exploited in Section 3. 

To summarize results to this point, we have that for w E W there exists a unique 
best w-weighted L2 approximation g to f. We denote the mapping of w to g by B. 
That is, 

B: W -G with = B(w). 

We now introduce a mapping F: W -+ W. For w E W, determine g = B(w) and 
let r = f-g be the residual function. Define a new weight w' = F(w) such that, 
forj= 1,*** ,m, 

Kl = W. Iri I wEIrI1, 

where ri = r(x3). That w' G W is shown in Lawson [2, p. 70]. We are now in a position 
to define the algorithm. 

0. Let k = 0 and select w0 E W. 
1. Determine gk = B(Wk) and let ak = (Z Wjk Jr rk2)1/2. 
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2. If Sk = a then stop; otherwise let w*+ = F(w*), increase k by 1, and return 
to step 1. 

Lawson showed the sequence {akc/'} to be increasing and bounded above by 
g* = II.-g"' In the case that ak Tr* as k a, the sequence {gk}k 0 of weighted 

L2 approximations has limit g*, the best uniform solution. To guarantee this con- 
vergence, it is necessary and sufficient to assume that for some "approximator 
determining set" (or "critical set") E0, every weight function wk is positive on every 
point of Eo. An approximator determining set is a subset of the extremal set 
E = {x E X:lf(x) - g*(x)l = - g* l}, on which g* is also the best uniform 
approximation to f. With the assumptions that all functions are real-valued and that 
G is a Chebyshev system, we are guaranteed the existence of some approximator 
determining set of exactly n + 1 points. E is always an approximator determining 
set and, if E contains exactly n + 1 points, is the only such set. 

The assumption that there exists such an F0 on which every w" is strictly positive 
is, in practical consideration, not at all strong, although examples can be produced 
where this is violated and, hence, {gk } does not have limit g* (see Lawson [2, p. 83]). 

Henceforth, it will be assumed that the algorithm does converge to the uniform 
solution. That is, g6k g* and ai' - * as k -m . 

Lawson reported that according to numerical experiments the convergence of 
la } to T* was related to the constant 

p max {If(x) - g*(x)j:x fT EI/r*. 

In fact he observed that 

(T* - a )/(r* - a- ) p, and also (7k - T*)/(Tk - _*) 
__ p 

where 7_ = l-f 
_ 

gkil 

It will be shown here that the algorithm does converge in a linear fashion and 
that the factor of convergence is at most p. To be specific, for every X > p there is 
an M > 0 such that for all k, jig* - gkl < MXk and ik _ 7* < MXk. This result is 
given as Theorem 2. 

3. Rate of Convergence. This section presents the proof of the convergence 
result stated above. For ease of understanding, the proof has been split into five 
lemmas, two theorems, and two corollaries. In order to convey the importance of 
each subresult, an outline of this section is presented. 

First, it will be shown in Lemmas 1 and 2 that the operators B and F satisfy 
Lipschitz continuity conditions on the compact sets W.. That B and F are simply 
continuous on W is not difficult to show, but a stronger result is required and this 
stronger result does not hold on all of W. For this reason, the compact sets W, are 
considered and prove sufficient for later application. 

In Lemma 3, it is shown that points not in the extremal set E have weights tend- 
ing to zero. This is used to prove Lemma 4: that the quantity VS wilril in the 
denominator of the definition of F tends to the constant T*. These two results are 
used to show that the rate of convergence of weights at a point x to zero, mentioned 
in Lemma 3, is in fact linear with convergence factor related to the ratio 
ff(x) - g*(x)l/r*. This is given as Lemma 5. The maximum of such ratios is exactly 
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the quantity p, thus p governs the convergence of the total weight of the set X E 
to zero. 

Theorem 1 and its two corollaries show that if all weight is concentrated on the 
set E and if the residual functions r1 are sufficiently close to the best uniform residual 
r* f - g*, then the algorithm converges immediately. Theorem 2 links all these 
ideas by taking the sequence I wk} and defining a new weight sequence {twk}. Elements 
of the sequence {I } have all weight concentrated on E which may not be the case 
for elements of { wj}, but the two sequences grow closer with increasing k. The degree 
of closeness is determined by Lemma 5. Then the Lipschitz continuity conditions 
of Lemmas 1 and 2 are applied to obtain the desired rate of convergence of {Jr - T* }. 

LEMMA 1. Let W1 V2 E W. where e > 0. Then there exists a constant MB 
(depending only upon e) such that 

1- 2 < MB 11W' - 'I where B(W')andj2= B(wO). 

Proof. Let D, and D2 be m X m diagonal matrices with elements {I av}" I and 
{wv} l respectively. Select a basis {gI} m.1 for G and let A be the m X n matrix with 

elements 

(A)i = g,(xi), i = 1, *--, m, j- 1, * ., ni 

and b be the m-vector with elements 

(b), = f(xi), i=1,*** ,m. 

Now, expanding the solutions g' and g2 in terms of the basis: 
n 

_ acgg and gj ' ag; 
i-i j-1 

from the orthogonality property it follows that the m-vectors a' and a 2 satisfy 
a= (ATDlA)FATDlb and a2 = (ATD2A)'ATD b Th 

a1 - a2 = [(A TDA)-' - (ATD2A)_1]ATDlb + (ATD2A)7lAT(Dl - D2)b 

(ATD A)-l[(ATDA) -(ATDA)](A DA) ATD~ b 

+ (ATD2A)-1AT(D - D2)b 

= (AT D2A) ' AT(D2 - Dl)[A(ATDlA)-'ATDl - I]b. 

Letting 1 11' indicate the L, vector and subordinate matrix norm, we have 

Ila - a211, ? lI(ATD2A)-Y'.- j IATj,- I D2- Dill, 

*(l|Alll-ll(A TDA)-1111-11A T 
I I1 |D1111 + 1) llblll. 

Furthermore, IlID2- DllI, =I l~lw - iV211 and I ID,l, I 1. 
Since W, is a compact set on which JI(ATDA)-Yl l < o for every diagonal matrix 

D corresponding to a weight w E WE, the quantity I (ATDA)- 1 is uniformly bounded 
on W,. 

This implies the existence of a constant M, depending only on e such that 

Ia' - 21 1I < M3l4 w I - I - j. 
The proof is completed by letting MB = M, maxi I I&gII and noticing that 
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- Igl _ g2jj = || ( 2)- <gi l j _ 2 -aI I g I I 

i 
a 

i 
ii-i 

< max IIgi IIjIa' - a 2j1 < max IlgjllM1.11j - TV211 
J 

i i 

LEMMA 2. Let W1D, W72 e W. where e > 0, then there exists a constant MF (depend- 
ing only upon E) such that 

IIF(TV) - F(Wp2)II _ MF MPWI 
- 2I 

Proof. First, notice that, for 81, 12 F 0, 

a, _ a2 <la,~ - a21 1I 

(1) |o1 _^2| loll 
+ lall * 01i 0I2 

113'l-' [la - a21 + lal I' 1/321 -1 - 1 2] - 

Next, from Lemma 1, 

I Igl _ g2ll < MB j7l 211 hg' ~2I ?MAl 11W -VI, 

(where g' = B(wl) and g2 = B(a2)). Thus, 

11 Iril - r121 11 = II igl _ fI _ Ig2 _ fl 11 
< I Igl _ g2ll < MB ll_ 211. ? ~g1 - g~jj MB IJIW - ji2j 

Let v = F(fv) and w2 _ F(zw2). Then, for i 1, ... m, 

w= - wi fr~l/ E wlj [rljl and w2 = w2 2l 
2 

/2 2 
2 

We have, for each i, 

|w~ ~ ~ ~ ~ ~~~~l. Irl - W2 1rl -< wl pl -I rl + w - w2 1 Ip2 

=< I' MB Il~ I V~l _ fV~llw 

From the equivalence of norms on finite-dimensional vector spaces, there is an e > 0 

such that e 11 j 11 _ 11f 112 (where 11 112 denotes the zV2-weighted L2 norm), and from the 

compactness of WE, there is an appropriate e which serves uniformly for every 
W2 E W.. Thus, 

e11221 < jjr2jj IIl2-fII2 _? 110-f112 = 11f112. 

Similarly, I If 112 may be uniformly bounded for every w2 G W, which implies the 
existence of a constant M1 such that 

li 1rpl I- f_2V jp211 _ M1 ll _ W211 

This yields 

1 P14 I - jiv1 IP _ m*MI 
V 

- w21 1. 
j-1 i=1 

Now, applying the inequality (1) with a, = 1I4 1, a2 = fiV pIr2, f3 = Jm 1 PlI gl and 

32 = zi W we have 
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2- _ V Ipl - I , Ip2I + V 

*( 2 
I>2| 

| s1 ji - 2 Ip2l 

_g M . Il~ I jV1 j211 

for some M, depending only upon e (the uniform bound on (1i wj IriI)-' for w e W. 
follows as in similar cases before). E 

LEMMA 3. If, for anyj, lg*(x,) - f(xi)l < r* then w; -+ 0 as k -> o. 

Proof. The sequence { w*.}* I being bounded above and below by 1 and 0 
respectively, has a convergent subsequence. To prove the lemma, it suffices to show 
every convergent subsequence has limit zero. To this end, suppose { w'} '_ is a 
convergent subsequence with limit a > 0. Select N such that i 2 N implies 
w*' > a/2, then 

m m 
2= ki wl Igki(XI) - f(xz)12 < wki lg*(X1) f(Xz)12 

< w*; Ig*(Xi) - f(Xi)12 + k W; ig*(xi ) f(xz)1 

< W*; Ig*(Xi) - f(Xi)12 + (1 - W;i)T* 

< r*2 _ Wk(*2 g*(x) - f(X) 2) 

< _*2 _ (a/2)(T*2 - jg*(xi) _ f(Xi)12) 

which implies { ok, } O cannot have limit r*, contrary to assumption. O 
Let 

JE= {J:x E E} and JO= {j: x E E}= X JE. 

LEMMA 4. 

m 
w W |g(X;) -f(x;) 7 * as k -+co. 

i-1 

Proof. From Lemma 3 we have that E,, W; -+0 and thus EJ2J W 1. 
It follows that 

m 

wl 1g*(xi) - f(xi)I 

- Wk Ig*(xi) - f(x*)j + I Wj Ig*(xi) f(X,) 
Jo JR 

= EI wj Ig*(xi) f(Xi)I + r* * E Wk 

Jo JR 

O + r* as k co. 

But also 
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>2 w]jg*(X,) - f(x)j) - >2 Wk g(j - f(x,)j 
I-I i=1 

> w (lg*(Xi) - f(Xi)l- Igk(Xj) f(Xi)l) 

m 
< >2 wk lg*(Xi) - gkkj ? jjg* g'|j|t 

- 0 as k cc, 

thus, 
m 

>2 W Ig (xj) - f(x0) | T*. O 
i-1 

LEMMA 5. For any j, let Xi = jg*(xi) - f(xi)l/r*. Then, either 
(i) for some Ni, w = O for k > N., or 

(ii) for any X' < Xi (X' > 0) and X" > Xi, there exist positive constants M' and 
M" such that 

MIXtk < Wj < MIIVIhk for all k. 

Proof. Assume (i) does not hold, then wj > 0 for all k. Since 

k+1~~~~~ k+ wk Ikk(Xi) - f(Xi)j / w jgk(x,) f(Xjj, 

k+1 |gk(Xj) _ f(Xj)| ki = - f-x,)Ig*(xi) - x Xix~ 
wi Z-1 wi |k(xi) - f(xil =)x 

as k o . Because Xi C (X', X"), there is an N such that k _ N implies X' < wj`I/wk 
< X", hence, X'w < w;1 < X"w;, and 

xI + k(x-k w) = X'1wk < < Wk+I < < X"11wk = Vk+1(X/I-kWk) 

for 1 2 1. In particular, for k = N and letting i = k + 1, 

[XI NWN]\ti < Wi < [\tt NN, . \li 

So the lemma holds for i _ N with 

MI = [X-NN] and M" = [X=-vwA] 

and holds for all i if M' and M" are appropriately altered. O 
THEOREM 1. For any weight w E W such that wj = 0 for all j E JO, let 

=B(w)andr = f -g.If 

sgn ri = sgn r', for all ij JE, 

then B(F(w)) = g*. 
Proof. By the orthogonality property, g' = B(F(w)) is the unique element of G 

satisfying 
M 

w - g(f'(x )-g(x,))g(x) = 0 for all g E G, 
i 1 

where w' = F(w). 
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For j (E J., we have 

jrj I = sgn r *r = sgn r* * ri = T* * rilrt 

and thus, 

w= a1wi IrjI = (r*/a)wjrj1/r*, 

mg where a = w. I ri. Hence, for each g C G, 

> w((x) - g*(xj)).g(xj) = i wfr'2g(xj) = (r*/a). wir,.g(x,) -1 jJE Jj iEJ 

= (r*/a) i wir,*g(x,) = 0 
j-1 

which implies g* = B(w') = B(F(w)). El 
COROLLARY 1. If, for some k, wj = 0 for all j G Jo, and sgn rk = sgn r*. for alt 

jE JE, then 
g = g* forallkl > k + 1 

(i.e., the algorithm converges in k + 1 iterations). 
Proof. According to Lawson [2, p. 72], if ao+1 = T* theng&k = g* for k1 2 k + 1. 

But from Theorem 1, gk+1 = g* and 
m \1/2 

k + 1 , Wi2w(f(xj) - g*(Xj))2) 

/ \~~~1/2 

COROLLARY 2. If, for some N, wN = 0 for all j E JO, the algorithm converges 
in a finite number of steps. 

Proof. It is clear that, for k t N, w; = 0 for all j E JO. Determine N1 2 N such 
that k _ N1 implies [ Igk - g*11 < T*. Then, 

I |rk - r* I I = I I (f - kk) - (f _ g*) I I < T 

and hence, since jr*J = I * for j - JE, 

sgn r, = sgn r* for i JE. 

The first corollary then guarantees that gk g* for k > N1 + 1. E 
Let J1 be defined by 

J1= {j: j E JO and wj > 0 for every j} 
and let 

po = max 1*(x)- g*(X,)I/r*. 
iEJl 

THEOREM 2. Given any X > po, there exists a constant M such that g* < 

MXk andrk - T* < MXk for all k. 
Proof. If, for any k, EjEsw = 0, then for all greater k the same is true which 

violates Lemma 4. Letting 13k = EjE, W1, we may define a new weight tDv for each 
k by 
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r= 0, j G Jot 

= Ok '* Wit j E JE. 

'From Lemma 5, we may assert the existence of a constant M such that for j E J1, 

J - w l = wt < MX` since X > Xi for all j E J1. 
For j E JE, 

Wk- Wj = (p31 - 1)^Wk < Ok 1 = 1 W. < M. *3 *k. 
iEJo 

'But since Ok, -- 1 as k -* co, { l } is uniformly bounded from above and we may 
assert the existence of an Ml such that 

II vk- wkII < M1XA for all k. 

It is now claimed that, for some e > 0, both of the sequences { wk'*-o and fw*k-0 

are contained in the set We. Considering {wk)}, <- first, if this sequence is not con- 
-tained entirely in any such W, there exists a convergent subsequence with limit w" 
such that wk > 0 for at most n - I values of j, thus w* <E W, contrary to the fact 
that every limit point of {wkj,} -_ is an element of W (see Lawson [2, pp. 75-76]). 
Thus, { wk } , is contained in W. for some positive e; that the same is true for 

{k } ka-O follows from the same argument and the fact that _ 
w-wJ7 0 as k -- c. 

We may now apply Lemma 2 to guarantee the existence of an M, such that 

F() - l W = IIF(W) - F(w)[I ? M2 IV9 - Wk M M4*l.,Xk. 

We now define gk to be B(vk) and hence from Lemma 1, there is an M3 such that 

I gk - | | = || IB( W ) - B(wk) jI < M3 I I Pk 
- wkI I MX 

Select N so large that Ijgk - 4k'II < r*/2 and fIg* - gkI < r*/2 for k ? N. Hence, 

-ig* - gkJJ < T* and as in the proof to the second corollary of Theorem 1, 
sgn r" = sgn rk for all i & JE. 

Applying Theorem 1 to i%, we see that 

B(F(w~k)) g* for k ? N. 

Applying Lemma 1 again, we have 

-k+ IB(F(vk)) B(wk+l)II < M4Xk+1 fork> N 

and suitable M4. Therefore, the inequality- holds for all k with larger M4 if necessary. 
'The proof is completed by noticing that 

Tk - T* = W - 9,|| - Ilf - g*ll 9 Ilk' - *11 a 

Several closing comments would be instructive. First, since 

p= max If(x,) -g*(xj)JT*, 

'it is clear that po < p, hence, Theorem 2 also holds for p. If po < p, then, for some 

.1 J o, 

IA~xI) - *(x1)I IAfX) - g*(x,)l 
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for all j E J., and, for some N, wk = 0 for k _ N. Computationally, this is unlikely 
with the standard algorithm. Thus, the convergence factor may be assumed to be p. 

Several techniques to accelerate the convergence of Lawson's algorithm have 
been tried (see Rice and Usow [4] and Cline [1, pp. 103-121]). The most successful 
techniques involve monitoring the quantities wk and setting to zero those for which 
very probably j E J,. Usually, these are j such that If(xi) - g*(xj)1/r* is very small, 
and hence less than po. If we assume - r* , Mp', then altering such wj will have 
no effect on the asymptotic behavior of { -r 1, but may on the initial behavior. 
This has been observed in numerical experiments. To decrease the asymptotic rate, 
hence po, it would be necessary to set to zero wok where If(xi) - g*(x,)I/r* is less than 
1 but very close to 1. This is extremely difficult since If - g is only known approxi- 
mately as If -gl. 
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